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Abstract

The adsorption of binary mixtures on solid heterogeneous substrates is studied by Monte Carlo simulation in the framework
of the lattice gas model. The energy of the surface has been modeled by considering two kind of adsorption sites, deep and
shallow traps, forming square homogeneous patches of different sizes; these adsorption domains have been distributed either at
random or in chessboard-like lattice to obtain simple heterogeneous topographies. The adsorption process has been monitored
through total and partial isotherms and differential heats of adsorption corresponding to both species of the mixture, for different
values of the parameters involved in the model (lateral interactions, energy gap between deep and shallow patches) and different
topographies. A rich variety of behaviors is found and analyzed in the context of the lattice gas theory. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Many molecular processes like adsorption, corro-
sion, diffusion, etc. involve the interaction of gases
with solid surfaces [1–5]. Real solid surfaces are het-
erogeneous because of a large number of contribut-
ing factors that can be sorted in terms of geometrical
(cracks, vacancies, etc.) and chemical (impurities, dif-
ferent adsorption sites, etc.) heterogeneity [6,7].

The energetic topography of real surfaces and
the lateral interactions between adsorbed molecules
can result in considerable deviations from a strictly
ideal behavior of adsorbed phases on homogeneous
surfaces.

The adsorption process of mixture gases on solid
surfaces is a topic of great interest not only from
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an intrinsic but also from the technological point of
view, due to its importance for new developments in
fields like gas separation and purification. Although
this problem has been theoretically [8–10] and ex-
perimentally [10–13] studied for many years, some
aspects are still unclear being necessary to reach a
better understanding about the behavior of the adsor-
bate during the adsorption process of the mixture.

In order to describe real multicomponent adsorp-
tion systems, it is necessary to take into account three
main effects on the calculation of the thermodynamic
quantities: (i) lateral interactions between adsorbed
particles, (ii) characteristics of the energetic surface,
and (iii) relative molecular sizes of the components
of the mixture. Most of the studies have only been fo-
cused on the first two aspects, considering equal sizes
of the components [10,14]. Patchwise and random
heterogeneous surfaces correspond to two different
disordered topographies which have been extensively
used in order to model the energetic substrate for the
study of surface processes [15,16]. On the other hand,
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a correlated heterogeneous medium can be considered
of an intermediate topography between random and
patchwise cases, allowing to obtain a better descrip-
tion of real substrates [17]. In addition, the interaction
between each species of the mixture and the surface
could be very different [14].

In this paper, we present a Monte Carlo simulation
study for the adsorption of interacting binary mix-
tures on simple highly correlated trap heterogeneous
substrates [18], in the context of the lattice gas model
[15,19,20]. The process was analyzed by following
total and partial isotherms as well as differential heats
of adsorption corresponding to both species of the
mixture.

We have studied the simplest heterogeneous case,
where the substrate is represented by a bivariate
surface, corresponding to a bimodal site-energy dis-
tribution. According to this model, deep and shallow
adsorption sites are grouped together, forming square
patches; these regular adsorptive domains are dis-
tributed at random, or in a chessboard-like ordered
topography. A more realistic model capable of re-
producing in a statistical sense the main topographic
features, would consider energy distributions for both
sites and bonds (saddle point energy maxima existing
between sites). Leading contributions to this subject
have been presented by Mayagoitia and co-workers
[21–23]. In this context, a substrate with two kind
of energetic sites and all of the bonds having the

Fig. 1. The patchwise heterogeneous surface formed by only two kinds of square patch with different energies, i.e. deep and shallow patches
with adsorption energiesεS (white sites) andεD (black sites), respectively. Both types of sites are present with the same concentration.
The energy frequency function corresponding to the site energy distribution is represented in (a). Two different topographies are shown,
namely the chessboard-like ordered (b) and the random patches (c) distribution. The lattice size used here isL = 32 and the patch size
corresponds tol = 4.

same constant energy, corresponds to an extreme
case of a site-bond surface [23], called bivariate
trap surface.

The work is organized as follows: in Section 2, the
general basis of the Monte Carlo simulation of adsorp-
tion and the basic definitions of the thermodynamic
functions are given. Results and discussions are pre-
sented in Section 3. Finally, the conclusions are given
in Section 4.

2. Monte Carlo simulation and basic definitions

The adsorption of a binary mixture of gases on a
heterogeneous solid surface was simulated by using
the grand canonical ensemble Monte Carlo method
(GCMC).

The substrate has been represented by a square
lattice of M = L × L adsorption sites with peri-
odic boundary conditions. The heterogeneity was
introduced by considering two kind of adsorptive
sites, deep and shallow traps, according to a bimodal
site-energy distribution (see Fig. 1(a)). The solid
heterogeneous surface is modeled as a collection of
finite homotatic patches where each patch is assumed
to be a square domains of equal sizeMP = l × l

sites. These adsorptive domains were used to generate
two energy substrates, having different geometrical
structures: (i) random distribution of patches, and
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(ii) chessboard-like array. These energetic topogra-
phies have been qualitatively represented in Fig. 1 for
a patch sizel = 4 where black (white) squares cor-
respond to deep (shallow) adsorption sites. Fig. 1(b)
and (c) correspond to patchwise and random cases,
respectively.

In order to write the HamiltonianH of the adsorbed
phase, let us introduce the spin variableci which can
take the following values:ci = 0 if the corresponding
site i is empty,ci = 1 if the sitei is occupied by an
A-atom andci = −1 if the site i is occupied by a
B-atom. We used the discrete variableα for distin-
guish the different sites:α = 0 (α = 1) represents
a shallow (deep) site. The size of both components
is the same and double occupancy of lattice sites is
excluded. Under these considerations,H is given by

H= 1

2

M∑
i

∑
lnn,i

[
wAA δci ,cl ,1 + wBBδci ,cl ,−1

+wAB
(
δci ,1δcl ,−1 + δci ,−1δcl ,1

)]
+

M∑
i

[
δci ,1

(
εASδα,0 + εADδα,1

)
+δci ,−1

(
εBSδα,0 + εBDδα,1

)]
−

M∑
i

[
µAδci ,1 + µBδci ,−1

]
(1)

where the symbolδ represent the Kronecker delta;
µA, µB are the chemical potentials of both species, A
and B, respectively;εAD and εBD (εAS and εBS) de-
note the energy interactions between each component
(A and B, respectively) and deep (D) (shallow (S))
sites.lnn,i means that for a given sitei, the sum runs
over the four nearest neighbor sites ofi. The pairwise
interactions,wAA , wBB, wAB are assumed to occur
between nearest neighbors only.

The grand partition function for an bicomponent
mixture is defined as [19]

Ξ(µµµ, T , V ) =
∞∑

NA ,NB=0

exp(NNN · µµµ/kBT )∏
i=A,BNi !Λ

3Ni

i

×
∫

Ω

exp

[
−U(xxxNNN)

kBT

]
dxxxNNN (2)

whereNi denotes the number of molecules of com-
ponenti, NNN the bicomponent vector ofNi ’s, µµµ the

bicomponent vector of chemical potentialsµi ’s, kB
the Boltzmann constant,V the system volume,T the
temperature,U the total energy ofNNN particles with
coordinates specified by the setxxxNNN = {x1, . . . , xNNN },
Ω is the phase space of the system, andΛi is the
thermal wavelength of the speciesi

Λi =
(

h2

2mikBT

)1/2

(3)

mi being the mass of the componenti and h is the
Planck’s constant. The probability of finding the
system in a state specified byxxxNNN is

P(xxxNNN) = exp(NNN · µµµ/kBT )exp(−U(xxxNNN)/kBT )[∏
i=A,BNi !Λ

3Ni

i

]
Ξ

(4)

Following the Metropolis scheme [24], the transi-
tion probability from a statexxxNNN to a new statexxx′

NNN
,

W(xxxNNN → xxx′
NNN

), is defined by

W(xxxNNN → xxx′
NNN) = min

{
1,

P (xxx′
NNN

)

P (xxxNNN)

}
(5)

in order to satisfy the Principle of Microscopic
Reversibility.

In adsorption–desorption equilibrium there are two
elementary ways to perform a change of the system
state, namely, adsorbing one molecule onto the sur-
face (adding one molecule into the adsorbed phase
volume V ), and desorbing one molecule from the
adsorbed phase (removing one molecule from the vol-
ume V ). The corresponding transition probabilities
are, respectively,

Wa(xxxNNN → xxxNNN+1)

= min

{
1, exp

[
−H(xxxNNN+1) −H(xxxNNN)

kBT

]}
(6)

Wd(xxxNNN → xxxNNN−1)

= min

{
1, exp

[
−H(xxxNNN−1) −H(xxxNNN)

kBT

]}
(7)

Given a square lattice ofM adsorption sites with en-
ergies already assigned, the algorithm to carry out an
elementary step in Monte Carlo simulation (1 MCS),
is the following:

1. Set the value ofµA, µB and temperatureT .
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2. Set an initial statexxxNNN by adsorbingNNN molecules
onto the lattice.

3. One of the components of the mixture is chosen at
random.

4. Choose randomly one of theM sites, and generate
a random numberξ ∈ [0, 1]

4.1. if the site is empty then adsorb the molecule
chosen in step 3 ifξ ≤ Wa;

4.2. if the site is occupied then desorb the molecule
if ξ ≤ Wd.

5. Repeat from step 3M times.

In the present case, the equilibrium state could be well
reproduced, after discarding the firstn ≈ 2×105 MCS.
Then, averages were taken overn′ ≈ 2 × 105 succes-
sive configurations.

Statistically, the total and partial isotherms are
obtained as simple averages:

θ(µA , µB) = 〈N〉
L2

, θA(µA , µB) = 〈NA〉
L2

,

θB(µA , µB) = 〈NB〉
L2

(8)

whereθ , θA and θB are the total and partial surface
coverages, defined, respectively, asθ = N/L2, θA =
NA/L2, θB = NB/L2; and the thermal average,〈· · · 〉,
means the time average throughout the Monte Carlo
simulation.

The differential heat of adsorptionqi for the
i-species is defined as [25,26]

qi = −
(

∂U

∂Ni

)
T ,Nj 6=i

(9)

whereU is the energy of the adsorbed phase. The rhs
part of the last equation can be written as(

∂U

∂Ni

)
T ,Nj 6=i

=
∑

k

{[
∂U

∂(µk/kBT )

]
T ,µj 6=i

[
∂(µk/kBT )

∂Ni

]
T ,Nj 6=i

}

(10)

By expressing both derivatives in the rhs of this equa-
tion as fluctuations in the grand canonical ensemble
we finally obtain the following forms for the differen-

tial heats of adsorption [14]:

qA = −
Φ(A)[〈NB〉 − 〈NB〉2]

−Φ(B)[〈NANB〉 − 〈NA〉〈NB〉]
[〈N2

A〉 − 〈NA〉2][ 〈N2
B〉 − 〈NB〉2]

−[〈NANB〉 − 〈NA〉〈NB〉]2
(11)

qB = −
Φ(B)[〈NA〉 − 〈NA〉2]

−Φ(A)[〈NANB〉 − 〈NA〉〈NB〉]
[〈N2

A〉 − 〈NA〉2][ 〈N2
B〉 − 〈NB〉2]〉

−[〈NANB − 〈NA〉〈NB〉]2
(12)

where

Φ(Ω) = 〈UNΩ 〉 − 〈U〉〈NΩ 〉 (13)

3. Results and discussion

In order to study the adsorption process of binary
mixtures on heterogeneous substrates, the Monte
Carlo simulations have been performed by consider-
ing the following statement: (i) the heterogeneity is
associated only to the A species (the B particles do
not interact with the substrate). (ii) There only ex-
ist nearest neighbor interactions between A particles
(wAA 6= 0, wAB = wBB = 0). (iii) The chemical
potential associated to the B species is kept fixed
(µB = 0). In addition, we have consideredkBT = 1
for simplicity, without any lost of generality. The
computational simulations have been developed for
squareL × L lattices, withL = 200; with this lattice
size we verified that finite size effects are negligible.

In our simulations, the first 2× 105 Monte Carlo
steps per site (MCS) were discarded to allow equili-
brium, while the next 2× 105 MCS were used to
compute averages.

Fig. 2 shows the results obtained for the adsorption
of a binary mixture on a homogenous surface (1εA =
εAD − εAS = 0), in presence of lateral interactions
between nearest neighbor adparticles.

In Fig. 2 we have plotted the A partial (a), B
partial (b) and total (c) isotherms for the homogeneous
problem, considering different energy interactions,
wAA /kBT = −2 (attractive case), 0 (noninteracting
case), and 2 (repulsive case). It can be observed in
Fig. 2(b) and (c), that the initial coverage takes the
same valueθ = 0.5 for the three isotherms; this
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Fig. 2. Homogeneous case:1εA/kBT = 0. (a) Partial A isothermθA vs. µA/kBT , (b) partial B isothermθB vs. µA/kBT , (c) total
isothermθ = θA + θB vs. µA/kBT and (d) differential heat of adsorptionqA vs. θA, for different values of energetic interaction between
A particles:wAA /kBT = −2 (triangles);wAA /kBT = 0 (squares) andwAA /kBT = 2 (circles). In all caseswBB = wAB = 0.

behavior can be explained as follows: forµA →
−∞ the A particle coverage is zero while the B
particles are randomly distributed on the lattice
with θB given by the Langmuir isotherm (θB =
exp{µB/kBT }/[1+exp{µA/kBT }+exp{µB/kBT }]),
which for µB = 0 is θ = θB = 0.5.

It is well known that for a lattice gas of interacting
monomers adsorbed on a square surface, there exists a
critical temperature (given bykBTC = 0.567|w|) cor-
responding to a phase transition in the adsorbate. The
nearest neighbor couplings,w, determine the charac-
ter of the phase transition: (i) ifw < 0 (attractive case)
the system exhibits a first-order phase transition, and
(ii) for w > 0 (repulsive case) a continuous order dis-
order phase transition occurs in the adsorbate.

We have considered both, attractive and repulsive
cases: (I) in the attractive case (triangles), the total
isotherm exhibits a discontinuity, which evidences the
first-order phase transition in the adsorbate. This be-
havior is due to the interactions between A particles;
it can be clearly observed in Fig. 2(a), where the par-
tial A isothermθA versusµA (open triangles) shows
an abrupt change of coverage fromθ ≈ 0 to θ ≈ 1.
This phenomenon induces an interesting behavior in
the B isotherm (solid triangles in Fig. 2(b)), which

also exhibits a well-defined step although the B parti-
cles do not interact neither with B particles nor with
A particles (wBB = wAB = 0). (II) In the repulsive
case (circles) the interaction between A molecules de-
termine ac(2 × 2) ordered phase for such particles.
Therefore, the A isotherm presents a plateau at half
coverage (open circles in Fig. 2(a)). At equilibrium,
the B particles occupy half of the empty sites, and the
corresponding B isotherm (solid circles in Fig. 2(b))
presents a plateau atθ = 0.25; this behavior is a con-
sequence of the excluded volume but is not due to
the interactions. The total isotherm (solid circles in
Fig. 2(c)) is the sum of the partial isotherms, then the
plateau appears atθ = 0.75.

The Langmuir case (noninteracting case) presents
the well known monotonic behavior in Fig. 2 (open
and solid squares).

In Fig. 2(d), the differential heat of adsorptionqA
corresponding to the A species is plotted versusθA,
for both attractive and repulsive cases. The differen-
tial heatsqB for the B species were not included in
the figure because they are strictly zero over all the
coverage range.

For wAA /kBT = −2, qA presents two different
regimes corresponding to a first-order phase transi-
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tion: at low coverage (0≤ θA ≤ 0.05),qA varies from
0 to 2kBT , which corresponds to very diluted gas ad-
sorbed phase, where an A particle has in average at
most one neighbor site occupied by another A parti-
cle; in the second regime, between 0.95 ≤ θA ≤ 1, qA
varies from 6kBT to 8kBT evidencing the existence
of a condensed gas adsorbed phase.

For the repulsive case (wAA /kBT = 2), the
behavior ofqA can be explained by analyzing two
different adsorption regimes: (i) for 0< θ < 0.5, the
ad-molecules avoidNN occupancy which produces
qd ≈ 0 (as forwAA = 0), and (ii) for 0.5 < θ < 1,
the adsorption of one more molecule involves an in-
crementcwAA in the energy of the system, wherec
is the lattice connectivity. The maximum inqA for
θ → 0.5− corresponds to the critical coverage at
which a dramatic change of order takes place in the
system (the system passes from the disordered to the
ordered phase) [26]. A similar situation occurs for the
minimum inqA at θ → 0.5+.

Let us now discuss the effect of the heterogeneity
on the adsorption process. In order to do this we have
considered two major contribution to the disorder:
(i) the difference in the adsorption energies between

Fig. 3. Chessboard like heterogeneous substrate (l = 4), and repulsive interaction between A particles. (a) Partial A isothermθA vs.
µA/kBT , (b) partial B isothermθB vs. µA/kBT , (c) total isothermθ = θA + θB vs. µA/kBT and (d) differential heat of adsorptionqA

vs. θA, for different values of the energetic parameter1ε. 1εA/kBT = −32 (triangles),1εA/kBT = −16 (squares), and1εA/kBT = 0
(circles). In all caseswAA /kBT = 4 andwBB = wAB = 0.

shallow and deep patches1εA = εAD − εAS, and (ii)
the topological distribution of the patches.

Fig. 3 shows the A partial (a), B partial (b) and
total (c) isotherms for a chessboard-like substrate
of deep and shallow patches (withl = 4), consi-
dering different values for the energetic parameter
1εA, (1εA = 0, −16 and−32, in kBT units), keep-
ing εAS = 0. The lateral interaction is the same
as for the homogenous case, i.e.wAA = 4kBT .
Fig. 3(d) shows the differential heat of adsorption
of A species corresponding to the above mentioned
cases.

In the homogeneous case (circles), the A isotherms
exhibits a plateau at half coverage due to the
order–disorder phase transition in the adsorbate. In
this regime, the A particles are forming ac(2 × 2)

structure, occupying half of the total number of sites
(θA = 0.5); the remaining sites are found half cov-
ered by B particles (θB = 0.25). The total isotherm
follows the same behavior, showing a plateau at
θ = θA + θB = 0.75. The differential heatqA (Fig.
3(d)) presents a jump at half coverage which deter-
mine two different adsorption regimes; this behavior
was discussed for Fig. 2(d).
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For 1εA = −16kBT , three adsorption regimes can
be observed:

1. At low coverages, 0< θA ≤ 0.25, the A particles
are adsorbed on deep patches forming ac(2 × 2)

ordered structure, resulting in a plateau in the A
isotherm atθA = 0.25. In this regime the B parti-
cles occupy half of the remaining sites (75% of the
lattice sites), and even though the B particles do no
interact neither between them nor with A particles,
a plateau appears in the B partial isotherm atθB =
0.375. The total isothermθ(µA) follows the beha-
vior of the partial isotherms (see Fig. 3(a)–(c)). For
this coverage range, the energy change involved in
the adsorption (desorption) of an A particle corre-
sponds to the adsorption energy of the strong sites,
and the differential heat of adsorption is constant
(qA = 16kBT ) (Fig. 3(d)).

2. For 0.25 < θA ≤ 0.75, the incoming A particles
can be adsorbed with equal probabilities in a deep
patch, surrounded by four adparticles, or in a shal-
low patch forming ac(2× 2) structure. Therefore,
there is no step in the A isotherm at half coverage.
Then, there is no jump inqA at half coverage.

3. ForθA > 0.75, the A particles are adsorbed on shal-
low patches, and a new plateau in the A isotherm
appears due to the ordered phasec(2 × 2) during
the filling of these domains. The dependence ofθB
and θ with µA can be explained by following a
similar reasoning than for (1). In this regime,qA =
−cwAA as for the homogeneous problem, because
the adsorption process occurs on patches of energy
εAS = 0.

In Fig. 3 is also plotted the case1εA = −32kBT ,
keeping unchanged the rest of the energetic parame-
ters. At low coverages, 0< θA ≤ 0.25, the behavior
is the same as in the previous case, that is A parti-
cles are adsorbed in deep patches forming ac(2 × 2)

phase. For 0.25 < θA ≤ 0.5, the deep patches are
filled by A particles. The filling of the shallow patches
(0.5 < θA ≤ 1) can be explained by similar argument.
According to that, the differential heat of adsorption
shows the corresponding values of energy involved in
the adsorption and desorption of a particles during the
different coverage regimes.

It should be noticed that there is an interesting
behavior in the observed quantities atθA = 0.5. In
fact, partial and total isotherms exhibit a plateau at

coverage around 0.5, similarly as for the homoge-
neous case. In the same way, the differential heat of
adsorption presents a very marked step at half cover-
age, instead of the smooth dependence observed for
1εA = −16kBT . In the homogeneous problem, the
plateau in the A isotherm atθA appears because of the
repulsive interactions between A particles, when the
c(2×2) ordered structures in the adsorbate are found.
This is precisely the origin of the plateaus atθA =
0.25 and 0.75 in the isotherms for the heterogeneous
cases. However, for1εA = −32kBT , the plateau at
θA = 0.5 is a consequence of the energy difference be-
tween deep and shallow patches, and does not depend
on wAA . Under this regime, deep patches are found
full covered by A particles, while shallow patches
are half covered by B particles; then the B isotherm
θB(µA) presents a plateau atθB = 0.25. Finally, the
total isothermθ(µA) shows a plateau at coverageθ =
0.75. Additionally, the differential heat of adsorption
qA(θA) presents an abrupt change atθA = 0.5. For
θA < 0.5 (θ < 0.75), the A particles adsorb on deep
patches surrounded by four occupied sites, which cor-
responds to an energy change of 16kBT in the system.

Simulations were also employed to study the effect
of attractive lateral interactions on the adsorption pro-
cess of a binary mixture. Isotherms and differential
heats of adsorption corresponding to a fixed value of
the interaction parameterwAA = −3kBT have been
plotted in Fig. 4, considering three different values
for the heterogeneity parameter,1εA = 0 (circles),
−16kBT (squares), and−32kBT (triangles).

In the homogeneous case, the A isotherm (open cir-
cles in Fig. 4(a)) shows the well known stepped be-
havior. ForµA < −5.0 the surface is half covered by
B particles (θB = 0.5) while θA = 0; if the chemi-
cal potential of the A species increases, the system
suddenly reach a new equilibrium state withθA = 1
andθB=0; the “A adsorbate” passes from a dilute to a
condensed phase in a very narrow range ofµA. Simul-
taneously, the B isotherm (solid circles) experiments
an abrupt change, fromθB = 0.5 to θB = 0. Conse-
quently, there appears a very well-defined step in the
total isotherm, where the total coverage change from
θ = 0.5 to 1 at this value of the chemical potential
(see Fig. 4(c)). In this case, the differential heat of ad-
sorption corresponding to the A species (open circles
in Fig. 4(d)) exhibits a simple behavior: at very low
coverage,θA ≈ 0, qA ≈ 0 while for θA ≈ 1, qA ≈
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Fig. 4. Chessboard like heterogeneous substrate (l = 4), and attractive interaction between A particles. (a) Partial A isothermθA vs.
µA/kBT , (b) partial B isothermθB vs. µA/kBT , (c) total isothermθ = θA + θB vs. µA/kBT and (d) differential heat of adsorptionqA

vs. θA, for different values of the energetic parameter1ε. 1εA/kBT = −32 (triangles),1εA/kBT = −16 (squares), and1εA/kBT = 0
(circles). In all caseswAA /kBT = −3 andwBB = wAB = 0. The dot line is an eye guide.

Fig. 5. Different heterogeneous topographies (with1εA/kBT = −32), and repulsive interaction between A particles. chessboard 1× 1
(squares), random 1× 1 (diamonds) and chessboard 4× 4 (circles). (a) Partial A isothermθA vs. µA/kBT , (b) partial B isothermθB vs.
µA/kBT , (c) total isothermθ = θA + θB vs. µA/kBT and (d) differential heat of adsorptionqA vs. θA. In all caseswAA /kBT = 4 and
wBB = wAB = 0.
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12kBT (which corresponds to the condensed phase).
For the heterogeneous problem, where the interact-

ing A particles “see” a chessboard-like substrate, the
A and B partial isotherms present two plateaus; the
first one corresponds to the filling of the deep patches,
and the second one appears when the shallow patches
are covered. For very low values ofµA, the surface is
half covered by the B species; ifµA is increased, the
system experiments a fast change where the A par-
ticles displace the B particles from the deep patches
resultingθA = 0.5 andθB = 0.25. The same effect
is observed at a higher value ofµA, corresponding to
the filling of shallow patches by the A species. These
abrupt transitions in the isotherms appear at two very
well-defined energy values observable through the dif-
ferential heatqA (Fig. 4(d)) corresponding to the two
adsorption regimes.

It is important to remark that, as for the repul-
sive case, the transition that occurs in the A adsor-
bate induces a similar behavior in the B adsorbate,
even though there are no lateral interactions between B
particles.

Let us discuss the effect of the different energetic
topographies on the adsorption process. In Fig. 5 we

Fig. 6. Different heterogeneous topographies (with1εA/kBT = −32), and repulsive interaction between A particles. chessboard 1× 1
(squares), random 1× 1 (diamonds) and chessboard 4× 4 (circles). (a) Partial A isothermθA vs. µA/kBT , (b) partial B isothermθB vs.
µA/kBT , (c) total isothermθ = θA + θB vs. µA/kBT and (d) differential heat of adsorptionqA vs. θA. In all caseswAA /kBT = −3 and
wBB = wAB = 0.

have plotted the A partial (a), B partial (b) and total
(c) isotherms, and the differential heat of adsorption
(d) for 1εA = −32kBT and different topographies:
chessboard-like array of size 1× 1 (squares), 4× 4
(circles), and random distribution of 1× 1 patches
(diamonds). The A (B) partial isotherm corresponding
to the 1× 1 ordered substrate presents a well-marked
plateau at coverageθA = 0.5 (θB = 0.25). This be-
havior is due to the effect of lateral interactions is
reinforced by the effect of topography. This fact is
shown in the differential heatqA as a jump at half
coverage (see Fig. 5(d)).

However, for a random distribution the behavior
is quite different (see Fig. 5). The shapes of the
isotherm and the differential heat are similar to the
4 × 4 chessboard like substrate (which was previ-
ously discussed). This fact can be understood by
considering that for the random distribution of deep
and shallow sites (with equal concentration of each
kind of site), the mean linear cluster size〈l〉 can be
calculated from percolation theory to be〈l〉 ' 5.4
for a square lattice at half coverage. Nevertheless,
the shape of the clusters is quite irregular, which
determines that the curves, particularlyqA present
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rather different behavior in the range of coverage
0.25 < θA < 0.75.

Finally, we present in Fig. 6 the results correspond-
ing to the attractive problem, by considering the same
topographies discussed in Fig. 5. The results obtained
for two different topographies, the 1× 1 and 4× 4
chessboard-like substrates, show an interesting beha-
vior for both isotherms (Fig. 6(a)–(c)) and differential
heats of adsorption (Fig. 6(d)). We have seen for the
repulsive case that 1× 1 topography give place to a
reinforcement in the tendency of lateral interactions to
form ac(2×2) ordered phase. However, in the attrac-
tive case the energetic topography compete with the
lateral interactions, which attempt to produce a clus-
tering in the A adsorbate. The result that emerges from
this behavior is the inhibition of the stepped transition
that appears in the 4× 4 case which is replaced by a
continuous and smooth increasing. The random 1× 1
substrate case results in an intermediate case between
the two topographies previously discussed. As before,
the total isothermθ versusθA in Fig. 6(c) follows
the same behavior observed for the A and B partial
isotherms.

4. Concluding remarks

In this paper we have studied the effects of the
lateral interactions (attractive or repulsive) and the
surface heterogeneity on the adsorption of a binary
mixture. The heterogeneous substrate has been mod-
eled by considering two kind of adsorptive sites (deep
and shallow), with energiesεAD and εAS (1εA =
εAD − εAS), forming l × l patches distributed at ran-
dom or chessboard-like ordered domains on a simple
square lattice.

Several conclusions can be drawn from the present
work.

We have observed that the adsorption process is
strongly affected by the energetic topography. In fact,
while for an homogeneous surface the repulsive (at-
tractive) lateral interactions generate a order–disorder
(a single step condensation) phase transition, the exis-
tence of a particular topography acts on the transition
as follows: if the mean cluster size is small, the to-
pography destroy the transition, and a plateau in the
isotherm, or a step in the differential heat of adsorp-
tion, appears (in our case at half coverage) only due to

the difference between energies of deep and shallow
sites; if the mean cluster size is considerable, a double
transition (order–disorder or condensation) occurs in
the system, first on patches of deep adsorptive sites
and then on shallow adsorptive sites. This process is
clearly shown in the isotherms and the differential
heat of adsorption of the A species.

On the other hand, even though there are no inter-
actions between B molecules, the partial B isotherms
appears to be very sensitive to both, the topography
and lateral interactions between A particles. This beha-
vior, induced by the A species, is not observed through
the differential heat of adsorptionqB.

In summary, the model presented in this paper rep-
resents a very important tool in order to study the
main characteristics of the heterogeneous adsorption
of a binary mixture, without any special requirement
or time consuming computation.
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